朱常渊不禁点了点头,这李季说的自然有道理。而且是一个很浅显的道理。内接正多边形的边数越多,他们距离圆周就越近,其周长就越接近圆的周长。
徐骥同样点头,口中念念有词,道:“割之弥细,所失弥少。割之又割,以至于不可割,则与圆合体。而无所失矣。李大人,可以开始了。”
徐骥说的这番话,就是刘徽在《详解九章算术》中注释的一段理论,意思是说:将正六边形割成正十二边形,然后依次割成二十四边形四十八边形。。。以此类推,割的越小。误差就越少,割来割去。最终到不可割的程度,这个正多边形就和圆合二为一了。
“好”李季首先取正六边形一边的中点。通过圆心并延伸到圆周上,将正六边形变成了十二边形。
“拿尺子来。”李季从下人手中拿出尺子,开始测量第一次切割出来的正十二边形的边长。
第一次割出来的正十二边形,李季只量了其中一边,得出长度后报给了徐尔默,说道:“徐公子记好了,十二边长度为七尺七寸零六。”
徐尔默在书上将这个数字记下来,旁边有专门的算盘先生将算盘拨的哗啦响。用这种方法计算圆周率其实很简单,因为它的假设前提就是正多边形的边长圆的周长。
所以,算盘先生很快便算出答案:先是将77612因为是十二边形,得出了十二边形的周长为9312,这只是近似远的周长。而圆周径比还要拿这个数字去除以直径30
等算盘先生完全算出以后,徐尔默在旁边报数道:“三,一零四。”
古代这种简化的报数方式,说到三的时候稍微停顿,后面就代表小数。通过第一次计算出来的接过,可知李季第一次割出来的圆周率为3104。
这个数据与已知的圆周率314差得太多。
朱常渊还是第一次看人这么计算圆周率,内心深处笑了。要说古人无法揣摩透祖冲之割圆的真正方法,朱常渊只能说一句:还差得远。
得到这个结果,李季并没有意外,继续将大圆上面的十二边形割成二十四边形。
量出其中一边的长度,朝徐尔默报道:“三尺九寸二。”
徐尔默记下来,然后算盘先生将算盘打的噼里啪啦,不出十秒钟得到了答案>> --