LEd略,可进阶为激光二极管。
bJt:双极型晶体管,三极管,晶体管。pNp、NpN、cbE。画法,发射方向,由p到N。掺杂高电阻低。发射区掺杂高,集电极大,基区薄而掺杂少,结构导致其具有电流放大的作用。两个结,以NpN为例,一个是发射结,一个是集电结,两结全指向内为截止,全指向外为饱和,从上到下为放大,从下到上为倒置。掺杂越高,多子越多,扩散能力越强。除了扩散电流之外,基区内有一小部分复合电流。
放大状态,发射区扩散电子穿过基区达到集电区边界,由于此时集电区反向偏置,这些电子又漂移进入集电区,产生漂移电流,当然,基区与集电区也有部分漂移电流。发射极电流等于基极电流加集电极电流,起放大作用。由结构决定的比例关系。
共射极直流放大系数,是集电极电流比基极电流。
共基极提现了发射极电流对集电极电流的控制作用,这个比例接近1。
小加小大之积等于大。
(文字描述开始乏力)
(****)输入特性:集电极电压一定,基极输入电压与输入电流的关系,是由集电极电压不断改变所画出的曲线簇。当仅有发射结正偏时,和二极管类似,加入集电结反偏后,漂移能力加强,扩散能力被抑制,基极电流会减少,集电结反偏变大后,也就是进入放大区,偏置增加不会显着影响ib。ib是一道坎,越过这个坎需要自由电子,或者反偏电压吸引,前期反偏产生的电场不够强,所以ib很大但是效果不好,这时是饱和状态,后面ib会大幅下降,逐渐显现出三极管的放大能力。
输出特性:在基极电流一定时,集电极电压与集电极电流的关系,随着基极电流改变而画出的一条曲线簇。截止区:基极电压很小发射极截止,集电极电流很小;放大区:ic受ib控制,vce增加,在保证ib不变时,ic会略有增加。饱和区:我理解起来,用失真形容更为合适,vce很小,集电结反向偏置很弱,由发射极扩散过来的自由电子不能被反向偏置电场完全吸收至集电极,ib失去对ic的控制能力。
接法不影响晶体管处在放大工作状态。共基极接法,输入特性与二极管类似,右边vcb电压增大,ie电流也增大,这是ib会逐渐减小至稳定。共基极的接法是恒流源,ie与ic几乎相等,饱和区、放大区、截止区就是管的状态。
晶体管参数:直流放大系数,先变大再变小,开始因为ib很大在逐渐减小,后面因为另一种饱和,ib逐步提高,ic具有上限,这个放大系数变小。与之匹配的共基极直流放大系数可以用公式求得,也是在不断变化。
集电结反向饱和电流icbo,看名字就知道是干什么的。穿透电流是基极开路,直接由c到e,穿透的名字就是这样的。研究它们主要是因为它们随着温度而变化,这些电流影响ib、ie、ic之间的关系,导致直流放大系数不稳定,如果因为温度变化而放>> --