nbsp;凌志早早来到实验室,把旁边会议室的投影仪布置好,然后把自己做的ppt拷进去,今天他要分享论文。
不一会儿,师门同学们陆陆续续都来到了实验室,紧接着,导师王海波也到了。
凌志的导师王海波4出头,今年刚刚评上了教授,正是志得意满的时候。听说家里的小儿子也刚刚出生,也是双喜临门之时。
虽然在计算机领域深耕多年,但并没有拼过头,头顶的平头发型还是郁郁葱葱,行走在路上时总是脚步带风,看见谁都一副笑眯眯的样子。
就是年纪逐渐上来了,颈椎经常性地不舒服,凌志想什么时候有机会在教师节送王导一个按摩仪试试看,也算报答王导的教育之恩。
“今天有没有人分享的?”
凌志没有犹豫,说道:
“老师,我来吧。”
凌志打开自己的ppt,毫不怯场地讲道:
“今天给大家分享一下我最近阶段性的实验结果以及论文。”
……
“这是我的数据预处理过程,我大致分为了5个步骤,……”
“这是我对句子对匹配的实验结果,两个句子属于同一人所发布即为正样本,不是同一人即为负样本。……”
“你先等下,你分类所用的特征都有哪些?”
老王问道。
“哦哦,我一会儿会详细说,我现在仅仅是先把结果抛出来。……”
“这个正样本和负样本的叫法合不合理嘞?这个实验结果你们觉得怎么样?”
老王跟大家讨论了一阵,然后让凌志继续。
“我使用的特征是一个14个维度的向量,包括人工提取的特征和神经网络提取的特征。……”
凌志讲ppt沿用了老王以前对学生们的教导——多用图表,少用文字,凌志对此深以为然。
事实上ppt本来就是用来突出重点的,如果往上面堆砌太多文字的话,讲者容易对着ppt念,听者也会觉得乏味,不会自己思考。而用图片和少量文字突出重点,就比较容易让听众们接受。
正如接下来凌志分享的论文,用一张图说明了一句话中每个词之间的远近关系。
“比如现在有两句话,‘他对媒体发表言论’以及‘他出席了新闻发布会’。虽然这两句话意思很接近,但我们如何用程序来进行打分判断呢?”
“我们应当将第一句话中的‘他’所对应的词向量跟第二句话中的每个词进行对比,找出意义最接近的那个。后面以此类推,‘媒体’对应‘新闻发布会’,‘>> --