代重夸克(顶夸克t和底夸克b的汤川耦合就是标准模型预测中的一种衰变。
它能与第三代重夸克进行汤川耦合,赋予一部分粒子质量。
而这部分粒子,可能就是构成我们日常生活中常见物质的原料,比如铁、铜、镍、金、银等各种金属。
但截止到目前为止,的对撞机lhc还未能从对撞实验中找到它衰变和耦合的痕迹。
目前观察这种衰变模式并测量其速率,是通过汤川相互作用来确定或不确定费米子质量生成的。
可在对撞实验中,各类探测设备,比如atlas超环面仪器实验探测器能观测到的,不仅仅有粒子对撞数据,还有更多的背景波动、嘈杂信号、其他信号等等。
这些东西占据了整体对撞数据的绝对大头。
按照以为的对撞数据来看,有用的数据在这些废物数据中的占比仅仅只有三百万之一。
要从这么夸张的占比中分析出有用的数据,就不得不提的超级计算机与全球计算网格,以及粒子物理学家为分析这些数据编写的计算机代码上了。
lhc在215年重启时,加倍的碰撞率将每年产生大约3pb的数据,几乎相当于每秒产生1gb的数据。
为了分析和处理这么庞大的数据,如今的粒子物理学家将大部分时间用在了编写计算机代码上。
的物理家和工程师编写了成千上万行代码,平均每天都有超过两万个程序在运行,用于在数百万个事件中搜寻不同寻常的信号。
这些优秀的程序,不仅仅用于分析粒子数据,还能作为大数据分析、数据检测之类的工作。
谷歌就在这里建立了全世界最大的云数据智能分析,借助每天诞生的庞大数据完善算法。
而全世界最优秀的数据分析程序,以及最先进共享信息程序也是在这里诞生的。
可见有时候,干掉你的并不一定是同行,而是来自某个你想都想不到的领域。
借助的优秀程序,花费了几天的时间,徐川顺利的完成了手中的数据>> --